July 31, 2021

and at massive scale with Databricks Workspace

Home.
GET STARTED.
FUNDAMENTALS.
RESOURCES.
DOCUMENTATION.
Home.
GET STARTED.
FUNDAMENTALS.
RESOURCES.
DOCUMENTATION.
TensorFlow™ on Databricks.
Ready-to-use TensorFlow.
Get clusters up and running in seconds on both AWS and Azure CPU and GPU instances for maximum flexibility .

Get started quickly with out-of-the-box integration of TensorFlow

Keras, and their dependencies with the Databricks Runtime for Machine Learning.
Benefit from a range of low-level and high-level APIs to train cutting-edge neural networks using TensorFlow, Keras, and Apache Spark.
Scale-out computation.
Easily scale-out computation in a distributed fashion with the new Databricks HorovodRunner.
Benefit from accelerated hardware support (CUDA and cuDNN) for greater performance s on the most demanding jobs.
Automatically scale resources based on your needs, and keep costs under control by separating storage from compute resources.
End-to-end collaborative experience.
Easily access, explore, and prepare high-quality data sets, in batch or real-time, and at massive scale with Databricks Workspace.

Share notebooks and keep track of changes with version history and Github integration

using Python, R, Scala or Java.
Share, run, and keep track of experiments locally or in the cloud, .

And deploy models on any platform with MLflow

Leave a Reply

Your email address will not be published. Required fields are marked *